Week 10 - Monday

# **COMP 4290**

#### Last time

- Network reconnaissance
- Eavesdropping
- Wireless vulnerabilities
- Started denial of service attacks

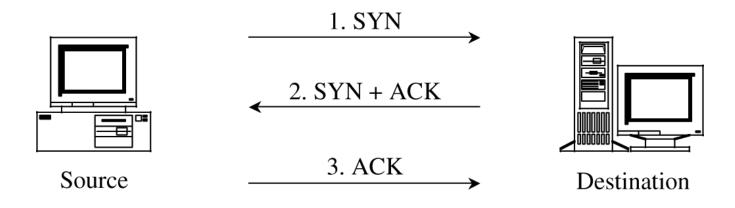
## Questions?

# Project 3

#### **Colm Oneacre Presents**

## **Denial of Service**

#### Denial of service

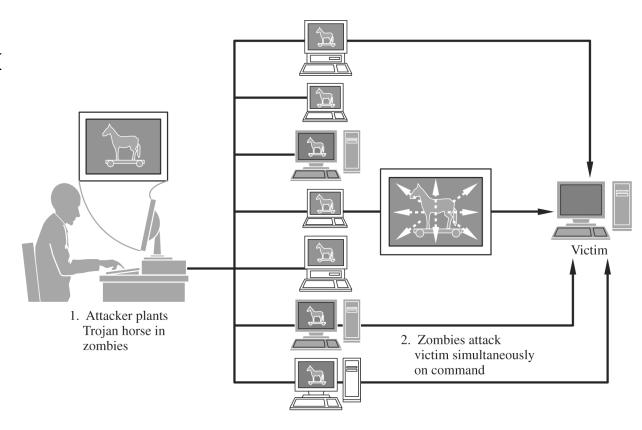

- Networks are one of the best places to launch an attack on availability
- In this setting, these are usually called denial of service (DoS) attacks
- DoS attacks are very hard to avoid

### Ways to make DoS happen

- Flooding overloads capacity
  - Ask for too many connections
  - Request too many of some other service
- Blocking access
  - Crash an application
  - Interfere with network routing protocols
- Access failure
  - Hardware or software fails

#### SYN flood

- TCP is built on a three-way handshake
  - Client requests a connection by sending a SYN packet
  - The server acknowledges the request by sending a SYN-ACK packet back
  - The client responds with an ACK, establishing the connection
- An attacker can just keep sending SYN packets
- The server will allocate some resources, wait for the ACK, and never get it
- A clever attacker will spoof at least his own IP so that the SYN-ACK is sent elsewhere
- A more sophisticated attacker will spoof many different IP addresses (or have many bots in a botnet) sending all these SYN's




#### Other denial of service attacks

- Echo-chargen
  - Chargen sets up a stream of packets for testing
  - Echo packets are supposed to be sent back to the sender
  - If you can trick a server into sending echo packets to itself, it will respond to its own packets forever
- Ping of death
  - A ping packet requests a reply
  - If you can send more pings than a server can handle, it goes down
  - Only works if the attacker has more bandwidth than the victim (DDoS helps)
- Smurf
  - A ping packet is broadcast to everyone, with the victim spoofed as the originator
  - All the hosts try to ping the victim
  - The real attacker is hidden
- Teardrop
  - A teardrop attack uses badly formed IP datagrams
  - They claim to correspond to overlapping sequences of bytes in a packet
  - There's no way to put them back together and the system can crash

#### Distributed denial of service

- Distributed denial of service (DDoS) attacks use many machines to perform a DoS attack
- Usually, many targets have been compromised with a Trojan horse making them zombies or bots
- These zombie machines are controlled by the attacker, performing flooding or other attacks on a victim
  - A network of zombies is called a botnet
- The attacker is hard to trace



### Stopping DDoS attacks

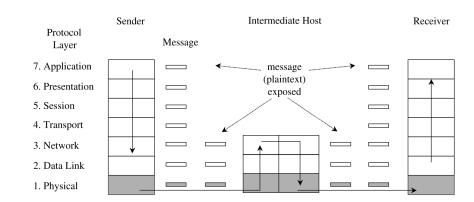
- The best defense is prevention
  - DDoS attacks are usually mounted by bots that were compromised by known vulnerabilities
  - Patch your stuff!
- Defense against DoS attacks:
  - Tuning: adjusting the number of active servers
  - Load balancing: redirecting traffic to servers that aren't getting used
  - Shunning: reducing service given to certain IP addresses
  - Blacklisting: ignoring traffic from known bad IP addresses

#### **DNS** attacks

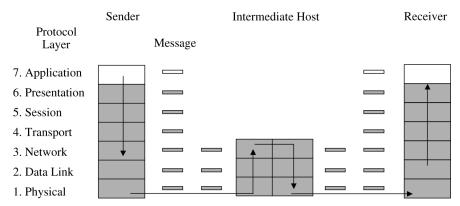
- The Domain Name System (DNS) uses Domain Name Servers (also DNS) to convert user readable URLs like google.com to IP addresses
- Taking control of a server means that you get to say where google.com is
  - Called DNS spoofing
- For efficiency, servers cache results from other servers if they didn't know the IP
  - DNS cache poisoning is when an attacker gives a good server a bad IP address

# Summary of vulnerabilities

| Target                     | Vulnerability                                                                                                                                                         | Target          | Vulnerability                                                                                                                                                           |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precursors to attack       | <ul> <li>Port scan</li> <li>Social engineering</li> <li>Reconnaissance</li> <li>OS and application fingerprinting</li> </ul>                                          | Confidentiality | <ul> <li>Protocol flaw</li> <li>Eavesdropping</li> <li>Passive wiretap</li> <li>Misdelivery</li> <li>Exposure</li> <li>Traffic flow analysis</li> </ul>                 |
| Authentication<br>failures | <ul> <li>Impersonation</li> <li>Guessing</li> <li>Eavesdropping</li> <li>Spoofing</li> <li>Session hijacking</li> <li>Man in the middle attack</li> </ul>             | Integrity       | <ul> <li>Protocol flaw</li> <li>Active wiretap</li> <li>Impersonation</li> <li>Falsification</li> <li>Noise</li> <li>Web site defacement</li> <li>DNS attack</li> </ul> |
| Programming flaws          | <ul> <li>Buffer overflow</li> <li>Addressing errors</li> <li>Server-side include</li> <li>Malicious Java or ActiveX</li> <li>Worms, viruses, Trojan horses</li> </ul> | Availability    | <ul> <li>Protocol flaw</li> <li>Transmission failure</li> <li>Flooding</li> <li>DNS attack</li> <li>Traffic redirection</li> <li>DDoS</li> </ul>                        |


## **Network Security Controls**

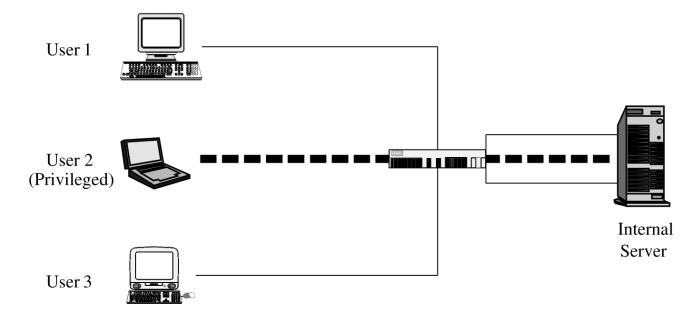
#### **Architecture**


- Good network architecture can make security better
- Segmentation means separating the network into different parts
  - Web server
  - Database server
  - Application servers
- Redundancy is important
  - Multiple servers that check if each other have gone down
- Avoid single points of failure

### Encryption

- Encryption is important for network security
- Link encryption encrypts data just before going through the physical communication layer
  - Each link between two hosts could have different encryption
  - Message are in plaintext within each host
  - Link encryption is fast and transparent
- End-to-end encryption provides security from one end of the transmission to the other
  - Slower
  - Responsibility of the user
  - Better security for the message in transit




- Message encrypted
- ☐ Message in plaintext: Exposed



- Message encrypted
- ☐ Message in plaintext: Exposed

### Virtual private networks

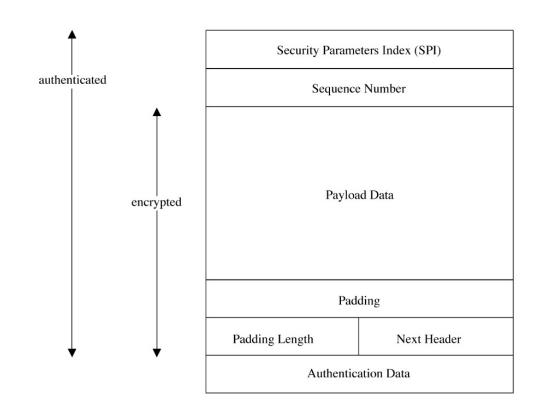
- Encryption that allows people in a public network to communicate securely with a private network creates a virtual private network (VPN)
- A user's system negotiates a key with a firewall that guards a private network
  - Communication takes place in a tunnel



#### Public key infrastructure

- As we discussed before, the big problem with public keys is making sure you get the right one
- Public key infrastructure (PKI) is the solution to this problem
- A PKI sets up certificate authorities who certify that keys belong to who they're supposed to
- Their jobs include:
  - Managing public key certificates
  - Issuing certificates that connect a user to a key
  - Scheduling certificate expiration
  - Publishing certificate revocation lists

### Secure protocols

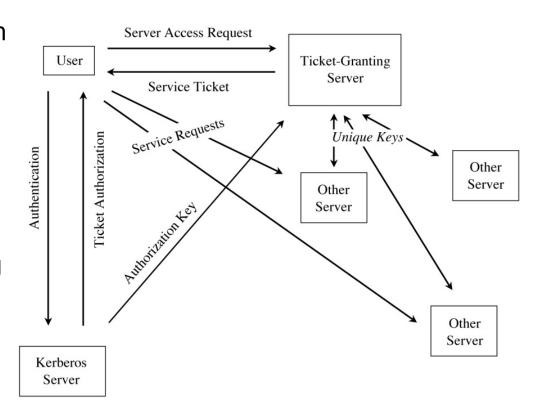

- SSH (secure shell) is a protocol for encrypted communication between computers
  - Designed for Unix/Linux, but available on Windows
  - Telnet, rlogin, and rsh should be replaced by SSH
  - Negotiates symmetric key encryption usually using public key encryption, similar to Project 2
- **TLS** (transport layer security) creates a secure session (golden lock) between a web browser and a web server

### **Onion routing**

- With link and end-to-end encryption, the data is encrypted, but the addresses are not
- Onion routing uses forwarding hosts where only the first host knows where the data came from and only the last host knows where the data is going
  - It uses public key cryptography to work
- It's inefficient, but traffic analysis is nearly impossible
- Tor is a system developed to do onion routing
- Such systems allow bad guys to keep their communications untraceable as well

#### **IPSec**

- IPSec (IP Security Protocol Suite) is a group of protocols designed to provide security for general IP communication
- There is an Authentication Header (AH) mode that provides authentication and integrity by supplying a cryptographic hash of the message and its addresses
- There is an Encapsulated Security Payload (ESP) mode that can provide encryption, authentication, or both
- In transport mode, IPSec encrypts only the payload of the packet
- In tunnel mode, IPSec encrypts the entire packet and puts it inside of another packet, hiding its final destination inside of a private network




### **Content integrity**

- Encryption helps protect integrity from malicious attackers
- Error correcting codes (like parity checks) can help prevent non-malicious problems with integrity
- Cryptographic checksums (AKA cryptographic hash digests) protect from both malicious and non-malicious threats to integrity

#### Strong authentication

- Who are you talking to? Passwords can be stolen
- One-time passwords prevent the problem of stolen passwords
  - RSA SecurIDs and other password tokens generate one-time passwords
- Challenge-response systems serve a similar role
- Kerberos is a system designed at MIT
  - Users interact with an authentication server who authenticates them
  - They get a ticket to access a file from a ticket granting server
  - The ticket lets you use a file
  - Everything is time-stamped



#### Access controls on routers

- Routers want to block packet floods from affecting the servers behind the router
- We can have ACLs that list all the legal (or all the illegal) hosts that can send (or are not allowed to send) packets into the network
- But, checking packets against ACLs slows down the system, making the router easier to flood
- Since it is possible to forge source addresses, the ACLs might not correctly block the packets

### Firewalls

#### **Firewalls**

- A firewall filters traffic between an inside network and an outside network
  - The inside is more trusted and needs to be protected from the outside
- Kinds of firewalls:
  - Packet filtering gateway or screening routers
  - Stateful inspection firewalls
  - Application proxies
  - Guards
  - Personal firewalls

### Packet filtering gateway

- Packet filtering gateways are simple
- They only allow certain packets to get by
  - Based on source or destination address
  - Based on protocol (HTTP on port 8o, for example)
- A packet filter can be used in combination with other firewalls
  - The packet filter can remove a lot of traffic so that a more complex firewall has to worry about checking fewer packets
- Packet filters ignore the data inside the packets
  - They only use the addresses and port numbers

    Packet Filtering
    Gateway

    Remote
    (Blocked)
    Network 1

    Remote
    (Accepted)
    Network 2

#### Stateful inspection firewall

- A stateful inspection firewall keeps track of data inside of packets
- For example, if a host inside the firewall initiates a TCP connection with a host outside, a stateful inspection firewall can remember this and let only that particular outside host's packets in

### Application proxies and guards

- An application proxy gateway (or bastion host) appears to function like a host running a particular application
- The outside world sends date to the application proxy's IP address
- The application proxy changes the addresses and forwards the data on to the real server
- Only appropriate requests and responses are allowed through
- All accesses can also be logged
- A guard is really the same thing, just with more functionality
  - For example, a guard might reassemble a file and run it through a virus scanner

#### Personal firewalls

- A personal firewall is software that runs on a workstation
- These firewalls can give additional protection
- The user and OS can have very fine grained control over what kind of connections can be made and what kind of applications can send and receive data

#### Network address translation

- Firewalls generally do network address translation (NAT)
- Outsiders direct all traffic to the firewall
- The firewall keeps track of which internal host is sending traffic on a particular port
- Thus, outsiders don't even know which machines or addresses exist behind the firewall

# Upcoming

#### Next time...

- Intrusion detection
- Database background
- Security requirements of databases
- Database reliability and integrity
- Aidan Kent presents

#### Reminders

- Reading Sections 7.1 through 7.3
- Form teams for Project 3
  - I need the name of the leader
  - You will need to create passwords and secret messages for every team in class